Mar 06, 2019 ページビュー:393
リチウムイオン電池は、寿命が長く容量が大きいため広く使用されていますが、使用期間が長くなると、バルーニングの存在、安全性能が理想的ではなく、ループ減衰速度の問題がますます深刻になり、深度分析が行われ、リチウム電気が阻害されます業界。実験的な研究開発の経験によると、著者はリチウム電池のバルーニングの理由を2つのカテゴリに分類します。 1つは、バッテリーポールピースのバルーニング変化の厚さです。もう1つは、電解溶融酸化分解ガス気球です。異なるセルシステムでは、チタン酸リチウム電池のカソードシステムなど、さまざまな厚さの主な要因によって電池が変化します。鼓腸の主な要因はドラム缶です。グラファイトアノードシステムでは、シートの厚さとバルーニング用のガスがすべてバッテリーの役割を果たします。
変化、電極板の厚さ
リチウム電池のプロセスでは、電極板の厚さ、特にグラファイトアノードが多少変化します。既存のデータによると、高温保管および循環後のリチウム電池は膨張しやすく、成長率の厚さは約6%〜20%、正の率はわずか4%、カソードの膨張率は20%を超えます。バルーニングの根本原因が大きくなることによって引き起こされるリチウム電池プレートの厚さは、グラファイトの性質に影響されます。インターカレーションされたliカソード形成LiCx(LiC24、LiC12、LiC6など)の場合、グラファイトの格子間隔が変化し、マイクロの形成につながります。応力、陰極の膨張。以下は、構造変更の充電と放電の過程で配置されているグラファイトアノードプレートです。
グラファイトアノードの膨張は、主にリチウムを埋め込んだ後の不可逆的な膨張によって引き起こされます。メインと粒子サイズ、接着剤、およびポールピースの構造の拡張のこの部分。コア巻線の変形により、カソードが膨張し、電極とダイアフラムの間に穴が形成され、カソード粒子がマイクロクラックを形成し、相固体電解質界面(SEI)膜が破裂し、電解質の消費である再構築により、サイクル。接着剤の性質のカソードプレートの厚さに影響を与える可能性のある多くの要因があり、シートの構造パラメータは2つの最も重要です。
グラファイトアノードで使用される接着剤はSBRであり、接着剤の弾性率が異なり、機械的強度が異なり、シートの厚さに異なる影響を及ぼします。圧延力終了後のプレートコーティングと厚みの負極片がバッテリー内にあります。同じ応力、接着弾性率の下で、ポールピースが大きいほど、物理的な後退は小さくなります。充電すると、Li +が埋め込まれた結果、グラファイトの格子膨張が発生します。同時に、カソード粒子とSBRの変形および内部応力が完全に解放されるため、カソードの膨張率が急激に上昇し、SBRは塑性変形の段階にあります。インフレ率のこの部分は、SBRの弾性率と破壊強度に関連しており、SBRの弾性率と破壊強度が大きくなり、不可逆的な膨張が小さくなります。
SBRの量と一致しない場合、ポールピースのローリング圧力が異なり、異なる圧力によってポールピースによって生成される残留応力に一定の差が生じます。圧力が大きいほど、残留応力が大きくなり、初期の物理的棚膨張につながります。フル充電状態と空の電気状態の膨張率。 SBRの含有量が少ないほど、初期の物理的棚上げ状態でフル充電状態のときのローラーへの圧力が小さくなり、空の電気状態の膨張率が低くなります。カソードは、コア巻線の変形、負の挿入されたliおよびLi +拡散速度の程度であり、細胞周期の性能に深刻な影響を及ぼします。
第二に、ガス気球によって引き起こされるバッテリー
バッテリーの内部ガスは、バッテリーが膨らむもう1つの重要な原因です。通常の温度サイクル、高温サイクル、高温は別として、さまざまな程度の膨張とガスが発生します。研究結果によると、バッテリーのビルジガスの原因は電解質分解の性質であることが示されています。電解質分解は、水分含有量や金属不純物ガス電解質分解などの電解質不純物である状況と、電解質電位窓が低すぎて充電過程で分解を引き起こす電解質分解物の2種類の状況があります。 EC、DEC、電子化後の溶媒などはすべて、フリーラジカル、低沸点炭化水素、エステル、エーテル、CO2などの直後のフリーラジカル反応を生成する可能性があります。
装填完了後のリチウム電池パックでは、プロセスに進むと少量のガスが発生し、ガスは避けられず、いわゆるソース電池の不可逆的な容量損失でもあります。初めての充放電の過程で、陰極への外部回路による電子化と陰極表面での電解質REDOX反応の後、発生したガス。このプロセスでは、グラファイトカソード表面のSEI形成により、SEIの厚さが増すと、電子が浸透できなくなり、電解質の継続的な酸化分解が抑制されます。 SEIの形成については、記事を参照してください。 SEIは何ですか?リチウム電池へのインパクトがとても大きい!バッテリーのプロセスでは、内部ガスの生成が徐々に増加します。これは、バッテリー内の不純物または過剰な水分によって電解液に存在するためです。電解質不純物は真剣に除外する必要があります、水分制御はそれ自体が緩い可能性があります、バッテリーのカプセル化は水を導入するために緩いです、電解質角度は損傷を引き起こしました、他のバッテリーの過充電は乱用を引き起こしました、内部短絡、またセルガス速度を加速する可能性がありますバッテリーの故障。
さまざまなシステムのさまざまなレベルで、バッテリーの生産量が増加します。バッテリーグラファイトアノードシステムでは、主にSEIフィルム形成内のガスバルーニングの理由、バッテリー、上記のように水は入札を超え、異常なプロセス、パッケージングなどに不十分であり、アノードシステムでは、チタン酸リチウムバッテリービルジガスはより深刻ですグラファイト/スライディングバッテリーシステム、電解質の不純物、水分、技術に加えて、チタン酸リチウムのグラファイトカソードとは異なり、バッテリーのグラファイトアノードシステムが好きではなく、表面にSEI膜を形成し、電解質との反応を抑制します。充電および放電の過程で電解液は常にLi4Ti5O12表面と直接接触し、Li4Ti5O12材料の表面分解を電気的に継続的に減少させます。これが、Li4Ti5O12バッテリービルジガスの主な原因である可能性があります。ガスはH2、CO、CO2、CH4、C2H6、C2H4、C3H8などの主成分です。チタン酸リチウムの電解質に別々に浸すと、CO2のみが生成され、スライド材をバッテリーに準備して、H2、CO2を含むガスを生成します。 、CO、および少量のガス状炭化水素、およびバッテリーを作成します。循環の充放電時にのみH2が生成され、同時にH2含有量が50%を超えるガスが生成されます。これは、充放電プロセスがH2とCOガスを生成します。
次のように電解質バランスのLiPF6:
PF5は強酸の一種で、炭酸エステルの分解を起こしやすく、温度の上昇とともにPF5の量が増加します。PF5は電解質の分解、CO2、CO、CxHyガスを助けます。電解質中の微量水からのH2の生成に関する研究によると、電解質中の水分含有量の一般的なレベルは約20 x 10-6であり、H2収率への寄与は非常に低いです。上海交通大学berenikeullmann実験使用グラファイト/ NCM111はバッテリーを使用します。結論は、H2の発生源は高電圧下での炭酸塩分解です。電流抑制チタン酸リチウム電池ビルジガス溶液は、主に3つあります。まず、LTOアノード材料の処理と変更で、準備方法の改善や表面の変更などが含まれます。第二に、添加剤、溶媒システムを含む電解質に一致する開発とLTOアノード。第三に、バッテリー技術を向上させます。
このページには、機械翻訳の内容が含まれています。
伝言を残す
すぐにご連絡いたします